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A DIFFERENTIAL METHOD FOR SOLVING THE BOUNDARY LAYER 

EQUATION FOR STEADY LAMINAR INCOMPRESSIBLE FLOW ^ ' 

by 

W. Schonauer 

ABSTRACT: An implicit differential method is given 
for the laminar incompressible steady boundary layer at a 
solid impermeable wall. It can be shown that perturb
ations are definitely reduced after a few steps of 
calculation. The method is tested practically with a 
large number of examples. An electronic computer 
is required, but the method is well suited for programming. 
Two-digit precision can be attained for the shear stress! 
£JL_l0W__C0S;t:;| '•' 

1. INTRODUCTION \ '/! 

a. The Prandtl boundary layer equations. 

For steady, laminar, incompressible flows, the Prandtl [l] 

boundary layer equations, which are a first approximation to 

the Navier-Stokes equations for high Reynolds numbers, [2] are: 

u ux + v u y - u . v - vuyy = o,) (la) 

«« + », = o,] (lb) 

where U(x) is the given outside velocity and v is the kinematic 

viscosity. The velocity components within the boundary layer, 

u(x, y) and v(x, y), are desired. In general, only the "velocity 

profile" u(x, y) or the derived quantities, wall friction stress, 

displacement loss thickness, and momentum thickness, are of interest, 

Numbers in the margin indicate pagination in the foreign text. 
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Equations (la) and (lb) can be solved under the following 

boundary conditions: 

1. Transition to the outside flow: 

y=oo: u(x,oo)= U(x)\ (2a) 

and as much as possible u (x, ooj) = u (x, <x\) = . . . = 0; 

2. Adhesion condition at the solid impermeable wall: 

v = 0: u(*. 0) = v(x, 0) = 0 . ] ( 2b) 

3. Furthermore, let an initial profile *be given: 

* = 0: u(fi,y) = u{y).\ (2c) 

b. Solution methods. 

For a numerical solution of (1) and (2), principally the 

following methods are used: 

1. Series method. U(x) must be stated as a power series, in x. 

The velocity profile u(x, y) is likewise developed as a power 

series in x with coefficients independent of y, and 

universally calculable on appropriate division. The accuracy 

of the method depends on the convergence of the series. For 

large values of x, particularly near a separation point, 

so many series terms must be considered that the application of 

the method is no longer practical. 

2. Momentum and energy conservation methods. With a prescribed 

trial function for the boundary layer profile, the boundary 

layer equation is fulfilled on the average acfoss-the boundary 

layer thickness with the laws of conservation of momentum 

(and energy). In this way we get an approximation to the boundary 
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layer equation. But we have little chance of estimating the 

error which may have occurred. The computing cost is relatively 

low. 

3. Differential methods. The solution u(x, y) is calculated 

at the lattice points of a difference netwdrk. The accuracy 

depends on the mesh width of the network. The computing cost 

is very high for high accuracy. Determination of the numerical 

stability is a prerequisite for the reliability of the method. 

4. Method of differences and differential equations. Differences 

are introduced in the x-direction, while differential equations, 

which are to be solved as boundary value problems, are retained 

in the y-direction. Iterations are required for this, and 

these require even higher computing cost than in the differential 

method. 

c. Similar solutions . \ 

The so-called "similar solutions" make up a class of exact 

solutions of (1) and (2), which we will need later. With a 

boundary layer thickness '̂ |(x) and a profile parameter ^(x)> 

we can set up an initial boundary layer profile 

u(x,y)=U(x)f'(ih?.),} 

with '<>i = yjd] . I t appears t h a t fo r 

2JU(xJdxl 

Ud- o ,, . 
—^- = fjr-r = A(x) 

v U(x) * ' 

with x^ as an integration variable and 

(3) 

A 74; 

;. = ̂ ^ (4) 
v U \ s ' 
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with A| = constant, that the system (1), (2) leads to a 

common boundary value problem, the so-called Falkner-Skan 

equation [3], the solutions of which are the] well-known 

Hartree profile [4] (Figure 1). 

The requirement that /.] = constant, with (4), establishes 

the outside velocity: 

X 

U(x) — c x*->-, (5) 

which can be explained as the potential velocity at a 

wedge upon which the flow is symmetric, with the apex angle 

'L-i\ (Figure 2). For ).\ = 1 we have stagnation point flow, 

and for ?.\ = 0, plane plate flow. 

2. THE STARTING EQUATION FOR THE DIFFERENTIAL METHOD 

a. The Crocco transformation. 

The Prandtl equations (1) are poorly suited for a 

differential method, as the integration range in the y-direction 

is infinite. Thus, Crocco [5] transformed the (x, y) region 

into an (x, u) region having the range limits u = U(x). Crocco 

took as the dependent variable the shearing stress 

r(x, u) — Q v Uy , | ( 6 ) 

with Q\ as the density of the flow medium. 

In the incompressible case, QV\ is constant. Thus, we 

take the dependent variable 

<(*> ") = -1±~L = "r (7) 
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Figure 1. 
Hartree profi le . 

Figure 2. 
The flow around 
a cone. 

Figure 3. \ 
Calculation of the 
velocity profile 
according to Prandtl 
and Crocco. 

Instead of the u-profile in (1) we use the t-profile. 

In order to obtain the velocity profile from this, we 

calculate the value y for u as the fixed position x 

(Figure 3). We have dy = du/u^, and with (7) dy = du/uy, 

da. 

'(*. «i) ' 
(8) 

where u-, is the integration variable and x is fixed. 

For the back-flow profile (t = u <|0), the Crocco transformation 

is no longer reasonable (Figure 3). 

If we transform the system (1), (2) to the t-variable 

with (7), then a non-linear boundary condition appears at 

the wall. But if we introduce the new dependent variable 

.-(*, u ) = • (9) 

all the boundary conditions become linear, an advantage for 

the differential method. It appears later that the z-profiles 

are better handled numerically than dhe t-profiles, and that 

the z-profiles avoid the singularity which occurs with the 



t-profiles near the separation point. 

The system (1), (2) is transformed to the z-variable with 

(7) and (9). With respect to the derivation of the z-equation, 

see Schonauer (2) Section 4. From (1) we obtain 

D-U':,-f(2::„-:-) = 0,| (10) 

and the conditions (2) become 

1. Transition to outside flow 

« == U(x) : z(x, U) = 0; (11a) 

2. Wall 

« = 0 : =„(x-,0) 
U U' 

(lib) 

3. I n i t i a l p ro f i l e 

x = 0 : --(0, u) = :(u) (lie) 

b. Similarity transformation. 

As was described in Section lc, the Prandtl equations (1) 

can be transformed by a similarity transformation into a form 

from which similar solutiohs)can be obtained at once. Now 

we shall likewise make a similarity rule for the z-variable, 

in which <5|(x) and AJ (x) are defined by equations (3) and 

(4). Because 6\ often appears in the combination U i>| = A(x), ', 

this quantity is defined in (3). 

In order to obtain dimensionless quantities, we introduce 

in place of. u: 

C-
u 

(12) 

(2) See footnote (1), page 1, 
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and obtain, instead of the variable range limit u = U(x)§the 

fixed limit d = 1 (rectangular range). 

We make the variable x dimensionless by a fixed reference 

length L. Then the argument x/L is to be inserted in all 

functions of x. Likewise, the integration variable X-./L is 

to be taken in (3), and we have 

A(x) = LAJJ[xlL).\ (13) 

A(x) has the dimension of length and AT(x/L) is dimensionless. 

For x\ we have 

/.(x/L) = ALU(xlL)IU'{xlL)\ with U'(xJL) = dUjd(xlL) .\ 

2 
The dependent variable z has the dimension of u , so 

for z we make the statement ~ •> 

-(*,«) =^H(C,*/L). (14) 

As U and <5|' are unknown functions, solution of the boundary-

layer equation is reduced to calculation of the dimensionless 

quantity H. 

With (3), (4), (13), and (14) we get an equation for the 

H-profile from (10). For its derivation, see Schonauer, 
/ o \ 

Section 5 v . With the designation IT = oiljdc} we get 

-1 [2 HII" - H* - X (1 - ;-) H' - (4 ;. - 2) f II]- C HxlL=0. (15) 
AL 

This equation is the starting point for the differential method. 

Equation (15) was given by Nickel [6]. Gadd [7] used 

a similar equation for the laminar compressible boundary layer. 

(3) See Footnote (1), page 1. 



Conditions (11) y ie ld 

f = 1 : H(l, x) = 0 ,-

The so-called second wall 

from (15) adhe s i on;'f o 11 bw.s, 

and (16b): 

(16a) 

r =o : H'(0, x) = - 7., | (16b) 

* = 0 : H(C,0) =H(f).J (16c) 

r 

//-^ 

ii 

% 

/V^ 

#-•0 

^ ? 
H'* H"-0 

Figure 4. Integration range 
and boundary conditions 
for Equation (15). 

C = 0 : H"(Q, x) = 0 .1 (16d) 

Figure 4 shows the integration range with the boundary 

conditions. 

In the following deliberations we shall, for simplicity, 

set L = 1 and only consider the reference length L again 

in Section 8. 

3. THE SIMILAR SOLUTIONS 0F\THE H-EQUATION 

If we set the large term in parentheses in (:15) equal 

to zero, and ?.\ is constant: 

2 HII" - H\- ?. (1 - C-) H' - (4 / - 2) -Q H = 0 ,~j (17) 

then all the coefficients of this equation and the boundary 

conditions (16a) and (16b), which satisfy a solution of (17), 

are constant. Then a profile H = H( Cl ) can be found as 

a solution of this ordinary boundary value problem, which 

satisfies (17) independently of x, and so also satisfies (15). 

Figure 5 shows some similar H profiles. They are the 



H-transformed Hartree profiles 

velocity according to (5). 

(4) which v. include an outside 

Rauer [8] has calculated similar H-profiles with high 

accuracy and was able to show that the asymptotic development 

r _> 1: H(C) -> (1 - C-) [o + 6 In (1 - C)} ] (18) 

applies, where a and b are constants. Then the value 

H' = 0 for c\ = !• That is, the profiles open at the point 

C|; = 1 with horizontal tangents. But at the same time, 

H" = ccj . The t-profiles corresponding to the H-profiles 

would open at C] = 1 with vertical tangents (Figure 5). 

This singularity is more undesirable for numerical calculation 
2 

than the singularity H" = co| of the t -profile. In Section 
it] is shown how the similar H-profiles can be computed 

interatively by the differential method. 
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Figure 5. Similar H-profiles Figure 6. Symbols for the 
differential method 

1 

(4) See Reference 4 
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4. THE DIFFERENTIAL METHOD 

a. Preliminary comments 

Explicit differential methods ' ' for the incompressible 

Prandtl equations were developed by Schroder.[9], Gortler [10], 

Witting [11] and Rheinboldt [12]; for the compressible Prandtl 

equations by Siekmann [13]; and for the compressible Crocco 

equation by Flligge-Lot [14]. From the author's experience, 

these explicit methods are stable only at sufficiently great 

distance from the stagnation point and sufficiently small 

step width in the x-direction. Stability investigations have 

not been performed. 

In order to obtain more favorable stability properties, 

Kramer and Lieberstein [15] developed an implicit differential 

method for the compressible Crocco equation, without demon

strating the stability, however. 

While the present work was being done, implicit differential 

methods with stability studies were developed by Fiebig [16] for 

the Prandtl equations and by Krawczyk [17] for the von Mises 

equation. 

b. Symbols for the differential method 

The integration range shown in Figure 4 is covered with 

a rectangular lattice having the mesh width } h in the x-direction 

and 1 in the fj-direction (Figure 6). In the .'^direction 

we will usually calculate with the more distinct strip number n. 

As the range is limited by C\ = 1, 1 = Vn. 

V 
\We assume that we know the solution H at a point x. 

which ,is also called, briefly, i, in the following. 

(5) A differential method is called explicit if the solution can 
be calculated explicitly at the lattice points, in contrast 
to implicit methods in which ithe solution is obtained by 
solution of a system of equations. 

1X1 f; 



We will calculate the solution for position x^+^ according to 

the parabolic character of Equation (15). 

As the differential method works with lattice point values, 

we replace the derivatives in the £|-direction by the central 

difference quotients 

if;,t=y(i/1-lt+i-Hi,i_1)|-4-HH. 

H[[k = n- {Hi,k+1 - 2 Hi,k + Hi,k_,) \-^H'v 

(19a) 

(19b) 

The first neglected term of the Taylor series is always shown 

in .{)! . 

We introduce the symbols 

J7i = 4 [ / . (* , . ) -2]C, 

£ ; = (1-0/.(*,.), 

Bt = CA*i) 

(20a) 

(20b) 

(20c) 

The ordinate on a line k of the mesh network, Figure 6, is 

£ = f* = M = £. 

For the large term in parentheses/in (15) we use the designation 

[i, k] = 2 HUk Hi;k-HH- EiH^ -ntHitk . 

c. An implicit differential method. 

We replace H in (15) by the difference quotient 

Hx = ~ (Hi+1,k -i/,,fc) \-JHJ (21) 

file:///-jHJ


and take all H values in the brackets [] of (15) at the point 

i + 1. Then, with the symbols from Section 4b, we obtain 

[i + i, k] - Bi+1 (Hi+1,k - Huk) = 0 . (22) 

Equation (22) contains three unknown H-values at the point i + 1 

through Equations (19). Such an Equation (22) can be set up 

for all inner lines from k = l to k = n - 1. But n + 1 

unknown H values, Hn to H must be calculated. Of these, 
1 (J n 

R = 0 is given from the boundary,condition (16a), so that 

an equation for HQ is still lacking. 

In order to obtain this equation, we represent the value 

H.,-| in the Cj-direction by a Taylor expansion at the point 

i + 1. With the boundary conditions (16b) and (16d);,;|we obtain 

the wall equation 

tf,+,.o-tfI+lil = -i{-£ff"}.| (23) 

The Equations (22) formed for k = l to k = n - l 

yield, with (23), a system of n equations for the n unknown 

HQ to H , . This system is nonlinear because-\of the first two 

terms in [i + 1 , k]. These terms are linearized as follows: 

' J W "Hi* = H^ Hi+i.« {+ hH*)A ( 2 4 a ) 

HlXu-HikHUti+hHc.}'] (24b) 

The equation system, which is again linear, is ordered 

with respect to the unknowns. This yields the equations: 

for k = 0, Equation (23) applies; 

for k = l to k = n - l , we have 

Ck,k-i Hi-ri.k-i + Ck,kHi+ltk -f cktk+1Hi+hk+l = rk\ ( 25 ) 



with the coefficients 

ck,kti = - 2 n* Hiwk ± T (HU + Ei+l) (26a) 

(with the exception that c •• drops out); 

ck,k = 4 n S H i . 4 + / 7 i + i + Bi+i , 

rk =£,-.,!#(.*. 

(26b) 

(26c) 

With the vectors 

tf,= 

\Hi-»-V 

-^i-r 1,1 

#i. 

/'o \ 

X = 

^••i-1, «-l y 

ie coeff 

can write the equation system in matrix form: 

\r"-V 

and the matrix C formed from the coefficients c, we 

0 1.. 

n-1 

71-7 

0 
x x 
x x x 
x x x 
x x x 

\J x x x 
X X 

C(IidHi+l = HII.y (27) 

Matrix C is a tridiagonal matrix 

(Figure 7). 

Figure 7. 
Tridiagonal matrix. 

To solve such an equation system, we will set up a 

special computer subprogram, in which the null elements need 

not be stored. For each equation, four memory positions '; 

are required with the right side. In order to solve by the 

Gauss elimination method, we need three additions, three 

subtractions, and two divisions for each equation. 



The vector H^^ appears as the solution of system (27). 

In this way, the H-profile is known at point i + 1. Then 

the profile for point i + 2 can be computed, etc. In order 

to compute one value H. ,-. , , 25 arithmetic operations are 

required if we count only the operation's to be done at each 

point (i + 1, k) (including solution of the equation system) 

and assume all other quantities to be previously calculated, 

such as »/2> n-, cfc, (l - £j-)| . 

r+J 

d. The initial profile n\ 

A profile H(Q\ must be given as the beginning condition 

(16c). Essentially, any arbitrary i/-|profile can be used in 

this method. But it will be very suitable if the initial 

profile also meets the boundary conditions (16a), (16b) and 

(16d). For a flow body with the leading edge angle «=;.^| 

(Figure 2) we will take the similar solution described in 

Section 3 for ;. = <X/.-T| as the /^-profile for point x = 0, 

for which the calculation is shown in Section 7. We can also 

start the calculation with x 0 ^ 0, and must then prescribe 

the profile H\ for this point. 

If the profile H\ does not meet the boundary conditions 

(18a), (18b) and (18d), then the "compatibility condition" 

between the initial and the boundary conditions is not met. 

The solution of such a problem has a singularity at the starting 

point, X Q , which in the differential method is "blurred" 

over a mesh width, but which does not perturb the application 

of the differential method. 

5. THE STABILITY BEHAVIOR 

The stability behavior of the differential method given 

above was studied directly with respect to the behavior of a 

small error, without being based on a stability definition. 

Here only the basic concept and the result of the investigation 

are reported. 

Til 



Figure 8. Eigenvalues 
1-1 max f o r t h e S'S m a t r i c 

Figure 9. Eigenvalues. W,c*| for 

the matrices R'R. 

A starting profile /7;] at point xi would produce an 

adjacent profile HJ+J at point x i + 1 as a solution of (27). 

An initial profile #,- + ?J , where 7Pi\ "is an error'vector ""^—^ 

assumed""to be 'small"; (!<?;r<!̂!l produces an adjacent profile 

,>?/,-+1-f ?;+J • Linearized-,/ then (vector arrows are now left off) 

we have 

pi+l "Pi: (28) 

where S is a matrix which depends on the solution H. but 



is independent of <p\. We shall call it the stability matrix. 

If we consider an error ?o! introduced at an arbitrary 

point XQ over several computation steps, we get the error 

s e r i e s : <fa;<pi = 5i9*0;Pa = s2fi = S2Sî o;|« . . e t c . , and g e n e r a l l y , a f t e r 
m s t e p s , 

9m = Sm<p,„-l = Sm Sm_l . . . So Si <J50 = Rm (pQ . j (29) 

We ask ourselves: how does the length of the error vector 

change here? If we investigate the first part of (29), 

that is, Vm — sm<F-m-i\ , this equation represents the behavior of 

the error in a (general) computational step. The length of this 

vector is 

I'Pmf = <f'm <Pm = fpL-l S'm Sm (fm-l , | ( 30 ) 

where ' designates transposition (exchange of rows and columns) 

With the eigenvalues ///~̂" 0 ( of the so-called Gauss-trans form 

S' S and the components a. of the suitably transformed 

vector Pm-i.V'l we get 

|pm-l|
2=o1

2+al+--- + a2J ( 3 1 a ) 

and for comparison 

\9mf = ft«i + ,«2«5-| r «„ a\ • (31b) 

If all ,"J<11; that is, if //„,„*<i] , then also \(Pm\<\<pm-i\ 
and the error vector has become smaller. An increase in the 

error can occur with ,«».«.« > l] . 

The matrix S' S depends on x/h, n, and the H-profile 

itself. The eigenvalues u o v were determined numerically for 

a large number of matrices S' S for the H-profiles of the 

similar solutions. The results are shown in Figure "8.1 As 
(6) all values of ,«*.«.* >i| ^ ', error amplification is possible 

(6) It can be shown that the value ."„lax — ^ as x/h — .-c] 



in all cases. It appears in the calculations ^ ' that the value 

of \x was usually much larger than the next largest eigenvalue, 

so that in the most favorable case we can figure on an ampli

fication factor of )'u,nJn\ for the length of the error vector. 

But even.then error amplifications are still possible, so that 

we get no statement about the stability from study of one step 

in the calculation. 

Next, we consider the second part of (29), namely, <Pn=R„,Pt>\ 

and investigate how the length of the error vector ôl has 

changed after a total of m steps. With exactly the same 

considerations as above, .this leads to study of the eigenvalues 
0)j\ = 0 of the matrix R' R . I The product matrix R also 

m m ( • r i m 

depends on the position x0/h, for which the' error Toj is 
assumed. The values of &w| were computed for a number 
of matrices\R' R . The results for H-profiles of the similar ; m m ^ 
solutions are shown in Figure 9. Because of computer memory 

j 

limitations, only values up to n = 20 could be investigated. 

The 'a>m*x\ curves always begin at the value ^max^^o)' ' 

first rising and then after some steps falling quickly below 

the value «„m.vJ = 1. Then all the coi<l\ and the error vector 

has certainly become smaller. As the value «»>«] also 

extends far beyond the next largest eigenvalue, then in the 

most favorable case we have the amplification factor }'o^Zln\ 
for the error length. In the general case, then, the error 

has always become smaller before the value wm«<i| has 

been reached. 

The explanation for the drop-off of the <y,„«| curve lies 

in the spectrum of the |i .. To be sure, there appears at least 

one value-of u} > l] , as well as other values of »;<H 

which reduce the amplifications of the preceding steps, as the 

eigendirections of the various p. . axe different at every point. 

Now if we study the values of comlx\ fox a. general outer flow 

U(x), 'an which X{x)\ and so the H-profile change with x, then 

(7) Simultaneous iteration for two eigenvalues by the von Mises 
m e t h o d . 1 •• 
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the eigendirections of the u . change even more strongly and so 

produce smaller values of a>m„,\ than for A J = constant. 

The awj curve was calculated for the flow around a cylinder 

(see Section 10c) at n = 20; it is plotted in Figure 9. 

This curve scarcely differs from the corresponding curve for 

A\ = 1, although A->;J . . for the cylinder and ' & 'separation J 

the curves for A = o\ or for •;) . . lie above the 
-• • -1 •'Al separation 

curve for A] = 1. 

It was possible to confirm the result of the stability 

study by numerical stability tests. Artificially introduced 

errors at arbitrary values of x/h and n were rapidly 

decreased. This was involuntarily confirmed by the fact that 

a calculation started accidentally with a separation profile 

gave the same separation point as one started with the 

stagnation point profile, within the limits of computing 

accuracy, for cylindrical flow. 

6. EXPERIENCE WITH AN EXPLICIT METHOD AND A MULTIPOINT METHOD 

Along with the implicit method described here, two other 

methods were studied. With the implicit method described in 

this work, the value H in (21) is calculated by Equation 

(15) taken at the point (i + 1 , k). In the explicit methods, 

H is formed from Equation (15) taken for the po'int ;(i, k). 

In the multipoint method it is formed from an average of 

Equations (15) for i and i + 1. The last two methods were \ 
(8) described extensively by Schonauer ^ . Here we report only 

the information obtained there with respect to the stability 

of this method. 

In the explicit method it appeared that we must have 

4 ^ J ^ A ^ H 
(2-/.).v' C — 

for stability. That means, for instance, that h must be 

(8) See Footnote (1). 



equal to or less than 10 for /| = 1, n = 10, x = 0.1. 

A larger value for h destroys the solution after a few steps. 

If the required computing accuracy would allow a step width 

of h = 10 , then a hundred times the computing cost would 

be needed for stability reasons. Therefore, this explicit 

method is not suitable for practical application. 

In_dhe multipoint method, as in the implicit method, 

the eigenvalues u. of the matrices S' S and the eigenvalues 

w,-.] of R' R are calculated. Such high values appear that 

destruction of the solution must be expected with a sufficiently 

large error. It is possible to calculate with this method 

as long as no large,errors are allowed. But it is no longer 

possible t.o._differentiate between method errors and amplified 

rounding errors, so that no reliable results are obtained. 

7. CALCULATION OF THE SIMILAR H-PROFILE 

For x = constant, A\. = constant, so that the H-profile 

is also approximately constant, at least if it is almost 

similar to the H-profile of x\ . Then the stability matrix S 

is also constant. In the program which is available anyway 

for calculation of the H-profile, one also suppresses the 

command to enumerate the x. In this way one always takes 

the solution profile for the x-interval again as the starting 

profile for the same interval. 

According to (29), for S = constant, _</••,„ = Sm <̂| . if 

*,„»*< i] for the maximum eigenvalue of S, then ,Sm ->_o] for 

I so that the initial error <?"o\ vanishes. Thus we have 

an interation method for computation of the similar solutions, 

because when !/>| = constant the error ?>0] is the deviation of 

the initial profile from the similar solution. 

Numerical calculation of a large number of eigenvalues showed 

that we always have ^^^i) for the methods described here. 

The fastest convergence appears at point x/h, at which *™"4 

has the minimum value. This is the case for xn/h = 0 or 

'••/l 8 1 , 



for xn/h = 1- There, one can generate the similar H-profile 

after 5 to 30 steps, depending on the starting profile and 

the required accuracy. That is, we can use H(t) = i\ 

TABLE 1 

WALL VALUE OF THE SIMILAR H-PROFILE AT 

VARYING MESH NUMBER n 

l,;. = o] AND 

n 

CO 

300 
200 
100 
50 
20 
10 
5 

; H,(;. = i) 

0,759636 
0,759733 
0,759805 
0,760051 
0.760659 
0,763107 
0,768554 
0.783003 

K,(/.'=0) 

0,110262 . 
0.110368 
0.11073-1 
0,111250 
0,112304 
0,115364 
0.119666 
0,124672 

Table 1 shows the wall values H0 = //(£ = 0)|of the H-profile, 

Figure 5, for ).\ = 1 and s.\ = 0 with various values of n. 

The value for n = cĉ  was calculated by Rauer (9) The H-profile 

and, with it, the wall values, depend on n, so that they give 

a view of the accuracy of the method. It is striking that the 
-4 value of Hn still shows an absolute error of 10 even for 

-3 n = 300. For an absolute error of 10 we must have n«-so] , 
_2 

and n«io| is needed for an error of 10 . The dependence 

of the error on the value of n is investigated in the following 

section. < 

8. ERROR DEPENDENCE ON THE MESH WIDTH 

a. Error in the i\-direction. 

\Approximation errors due to a finite strip number, n, 

arise in the ;|-direction due to the central differences (19) 

We commit such an error in each Equation (15). In comparison, 

(9-) See reference [8], 1 



we can neglect the errors of the wall equation (23). Then, 

instead of (27), we obtain the equation 

C//i+1 = r+/,i (32) 

in which f is the error vector which has the components 

fQ = 0, for k = l to k = n - 1 

/* = - A iH R1V - [2 H' +;-{1 ~ C")] H'"} (33) 

If the term in braces, { }\ , in (33) were a constant 

independent of n, then the error vector would be proportional 
2 

to Vn . A study of the HQ values given in Table 1 for their 
dependence on n shows that the errors of the HQ values are 

approximately proportional to n. This means that the term 

in braces, { }| , in (33) itself varies strongly with n, 

because of the fluctuation of the higher derivatives H''' 

and HIV. 

a point k. 

It is sufficient that a large value of f̂  appear at 

From the formal solution of (32): tf;.M = Crl r + C~lf\ 
we see--that this component is distributed over the entire 

solution H 

'/18 2 

i+r 

b. Error in the x-direction. 

An approximation error in the x-direction arises, through 

the difference quotients (21) and the linearization (24). We 

again obtain an erroneous^equation (32) with f 0 = 0, and, 

for k = l t o k = n - l 

• / * 

2 II" 1L - H' II,, 
AQ 

II. (34) 

The error is proportional to the step width h if the term 

in brackets in (34) is constant. The bracketed expression can 

take on large values if H or H are large. So as to 

calculate over-all with about the same approximation error, 

it is desirable to compute with smaller steps where H or H 
) X XX 

are Targer]than in the rest of the range. The course of H 

depends on U(x) ~ and is easily determined by a coarse sample 

calculation. 
HI 



It is convenient to choose the step width h so large 

that the approximation error in the x-direction for a single 

step is about one-tenth of the error which Table 1 shows for 

the n used. A higher expenditure for computing in the 

x-direction does not improve the accuracy^because*the attainable 

accuracy is limited by the value of n. Accumulation of _ 

single errors in the x-direction is not to be expected, according 

to the results from Section 5, as each error can be considered 

as a small perturbation <Fo\ of the true profile, which is 

removed after a few steps. 

9. COMMENTS ON PRACTICAL CALCULATION 

It is practical to set up the program for solution of (27) 

so that the functions U(x), A(x) and /j(x) a r e provided to 

the main program by a subprogram with the argument x. Cal

culation for various velocities U(x) is done by exchange 

of this subprogram. 

Now we shall state the relations by which the practically 

interesting quantities can be calculated from the H-profile. 

In order to obtain dimensionless quantities, we again use 

the reference length L introduced in Section 2b,. along with 

a reference velocity U^) with which U(x) is made dimensionless. 

For the wall shearing stress ô] we obtain, using (3), 

(7), (9), (13), and (14): 

T0(X/L),/I/00L = i/£Wj 

sU% V v ¥ A L 

0 , U \3 

L "U<* 
(35) 

where HQ = H(0, x/L). ]Analogously, we obtain the y-coordinate 

with (8): 

y(*/L,C)i/t/, L 1 /7 U?__ # i . O l / U o o L 1 / A Ua> 
L y v . y ^ U J p H£„ x!L) 

(36) 

with CiJ as the integration variable. The integral is calcul

ated in the examples of Section 10 by the right angle rule 

with the first derivative, with the points CA| of the difference 



method as base points. The exact formulas for this can be 

found in Sch'onauer ^ . The displacement thickness 5"\ and 
the momentum loss thickness <?J are defined by 

y = c 

d*= Ml dy , 0 f(»-fl*-
y = 0 

With du/dy = u = t for a fixed position x, we obtain 

c=i 

3*^/L)1/t77L_i/J If* 

~r~ Y ~ HAL~TT \f2H(C,xlL) 
•d<:, 

. 6(x,L),/U^_L _]/4 U*~ I C (1 — C) 

C=o 
:H(;,x/L) 

•<*£ • 

(37) 

(38) 

The integral is again computed by the right angle rule. 

10. EXAMPLES 

a. Preliminary comments 

/•18-3;. 

The examples were computed with the Zuse Z23 computer system 

at the Karlsruhe Technical College. A program was set up which 

computed with two different step widths! h: with hn from 

x, to and with hn for x >| x„ 
0 

It was printed only 0 -" "s-
at preset x-intervals, and only there were T0, <)'..'&\ and, 

if selected, also y, computed. The strip number n has a 

double effect on the accuracy of y, <5*, Q\ : both the accuracy 

of the H-profile as well as the evaluation of the integrals 

by the right angle rule depend on the value of n through 

the n specified base points. The quantifies y,d*,G\ are 

thus, quite inaccurate for small n. 

(10) See Footnote (1), page 1. 

n 



b. Outside velocity, Nl 

The outside velocity Nl, proposed) by Nickel ^ , is 

composed of a stagnation point flow with adjoining plane plate 

flow (Figure 10). It is 

0 < *- < 1 : -- = — . 
^ L - U„ L • 

i x u 

Figure 10. Outside velocity, 
Nl 

Figure 11 shows the results for H0,r0,&*,9\ for the calculation 
with n = 100, hQ/L = 0.05, t^/L = 0.1, xs/L = 5. The 

H-profile up to x/L = 1 is that of the stagnation point flow 

and is;]therefore, independent of x and h constant. At the 

point x/L = 1, plane plate flow begins, and there U* has 

a jump. Thus, the "compatability conditions" between the profile 

for x/L = 1 and the boundary conditions for xiL>i\ axe not 
met, so that the solution H has a singularity at x/L = 1. 

This appears distinctly as the jump of the HQ value in Figure 11. 

As an accuracy comparison for different parameters n and 

h is not well representable analytically, numerical values 

for H0, r0, <5*, 6\ axe given in Table 2. The table shows that an 

accuracy of two figures for T,,] can be attained with relatively 

little computing cost, while high computing cost is required 

for an accuracy of three digits. 

c. Cylinder with potential flow. 

• - - - \ 

The boundary layer was calculated for the potential velocity 

of a cylinder with flow transverse to the axis. We have 

(H) See reference [6]. 

m 



'PIU„\ = 2 sin (x/R). Here R is the radius of the cylinder, 

which in this example is chosen as the reference length L. The 

Quantity x/R is the angle in radians, measured from the 

stagnation point of the cylinder. The initial profile is the 

stagnation point profile (similar H-profile for '?.\ = 1). 

Figure 11. Outside velocity Nl: 
U, Hn, >v."el , for n = 100; 
h /L = 0.05; h,/L = 0.1; x/L = 5. 
O J_ o 

./lis: 
Figure 13 shows the results for H0, T0, <5*, 0\ at n = 100, 

h = 0.005. At the separation point, HQ = 0 and r0\ = 0. 

Goldstein [18], in a theory later improved by Stewartson [19], 

showed that in the vicinity of the separation point x the 

shear potential T0̂  varies as (xa - x)^. HQ is proportional 

to To] and so it varies as x - x at the separation point. 

That is, the r0\ curve opens at the separation point with a 

vertical tangent in the x-axis, and the HQ curve like a linear 

function. The ^ and HQ curves in the vicinity of the separ

ation point are plotted in Figure 14 for different values of n 

and h. It should be noted that they are not expressed for each 
step of the computation. 



TABLE 2. OUTSIDE VELOCITY Nl: VALUES OF "o.*o.<5*.0| (IN 
DIMENSIONLESS FORM) FOR DIFFERENT VALUES OF 

n, h, AND x/L 
i 

r 
n i *. 
n , . 

*s/t 

: X/L = 
0,5 

1 

1 

1,5 

! 2 
i 
1 1 
i 

4 
i 

9 
i 

i '• 2 0 0 ; 

i o.i : 
j °'' i 
! ~~ i 

j H0 = 0,7598 : 

' T 0 = 0,6163 : 

; d* = 0,6466 • 
] & = 0,2911 | 

i 0,7593 ' 
j 1,2327 : 

i 0,6466 
0,2911 ' ! 

! i 

! i 

1 0,1539 ; 
' 0,3923 1 
• 1,4680 | 
; 0,5707 

0,1342 ' 
: 0,2991 ! 

1,9133 : 
0,7392 ; 

' 0,1190 I 
I 0,1844 I 
i " 3,0937 j 
| 1,1913 | 

! - 0,1139 ! 
! 0,1157 i 
| 4,9260 ! 
!' 1,8956 i 

100 
0.01 
0.01 

~ 

0,7600 
0,6164 
0,6454 

• 0,2901 

0,7600 
1,2329 
0,6454 
0,2901 

0,2012 
0,5362 
1,0848 
0,4253 

0,1568 
0,3959 
1,4482 
0,5603 

100 
0,03 
0,1 
5 

1 

-

j 
1 

" 
J 

0,2001 
0,5346 
1,0918 
0,4297 

0,1554 
0,3942 
1,4562 
0,5641 

0,1355 
0,3005 
1,8999 
0,7319 

0,1199 
0,1850 
3,0766 
1,1817 

0,1145 
0,1161 
4,9024 
1,8819 

100 
0,1 
0,1 

~ 

1 

-
j 
) 

~ 

j 
0,1993 
0,5336 
1,0985 
0,4337 

0,1541 
0,3926 
1,4616 
0,5681 

0,1345 
0,2994 
1,9080 
0,7355 

0,1194 
0,1847 
3,0828 
1,1842 

0,1143 
0,1160 
4,9066 
1,8836 

20 
0,1 
0,1 

~ 

0,7681 
0,6177 
0,6364 
0,2825 

0,7631 
1,2354 
0,6364 
0,2825 

0,2015 
0,5365 
1,0814 
0,4215 

0,1566 
0,3958 
1,4369 
0,5500 

0,1375 
0,3027 
1,8659 
0,7093 

0,1231 
0,1875 
3,0019 
1,1372 

10 
0.01 
0,01 

0,7685 
0,6199 
0,6262 
0,2742 

0,7685 
1,2398 
0,6262 
0,2742 

0,2064 
0,5430 
1,0473 
0,4000 

0,1633 
0,4041 
1,3870 
0,5221 

/ 

10 
0,1 
0,1 

~ 

1 
~ 

J 
) 

-

J 
0,2045 
0,5405 
1,0612 
0,4081 

0,1603 
0,4003 
1,4049 
0,5307 

0,1415 
0,3072 
1,8192 
0,6829 

0,1275 
0,1903 
2,9204 
1,0934 

Figure 13. Flow around a cylinder: .̂̂ -.el for n = 100, h/L 
h/L = 0.005. 
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TABLE 3. FLOW AROUND A CYLINDER: VALUES FOR ?Wl«! <>' • f--6- 1 T\ 
IN DIMENSIONLESS FORM) WITH DIFFERENT VALUES OF n AND h 

.* J -•= 

*•/« 

0,3 

0,5 

0,8 

1,0 

1,2 

1,5 

1,6 

1 
1,7 

1,8 

1! 

Tir.-ill 

1,3:3 

1I0 = -

TJ\'H = 0,3569 
<5* 1/2 = 0,6595 
0 ]'2 = 0,2971 

-
0,5575 
0.6813 
0,3061 

0.7550 
0,7408 
0,3303 

— 
0,7979 
0.8057 
0,3360 

— 
0,7611 
0,9031 
0,3927 

_ 
0.5520 
1,1685 
0,4826 

_ 
0,4396 
1,3241 
0,5281 

— 
0,1049 
2,0326 
0,6628 

n-= 300 
,;: - ''.P^S 

i,s:3-i 

0,7457 
0,3569 
0,6587 
0,2964 

0.7201 
0,5575 
0.6805 
0,3034 

0,6526 
0,7548 
0.7400 
0,3295 

0,5833 
0,7976 
0,3051 
0,3551 

0,4888 
0.7606 
0,9027 
0,3919 

0.2850 
0,5510 
1,1689 
0,4819 

0.1982 
0,4384 
1,3252 
0,5273 

0,1043 
0.2989 
1,5623 
0,5854 

0,0149 
0,1045 
2,0349 
0,6618 

:'fifi 
o.oj'i; 
i , » 2 3 

0,7458 

0,3569 
0,6583 
0,2960 

0,7201 
0,5575 
0,6800 
0,3050 

0.6526 
0,7549 
0,7395 
0,3291 

0,5834 
0,7977 
0.8046 
0,3546 

0.4889 
0,7607 
0,9020 
0,3913 

0,2851 
0,5511 
1,1680 
0,4812 

0.1982 
0.4385 
1,3242' 
0,5265 

0,1043 
0,2939 
1,5611 
0,5814 

0,0149 
0,1045 
2,0336 
0,6608 

] SO 
0.0U.1 
1.C-J2 

. 0,7460 
0,3569 
0,6570 
0,2949 

0,7204 
0,5576 
0,6787 
0,3038 

0,6529 
0,7550 
0,7381 
0,3278 

0,5837 
0,7979 
0,8030 
0,3532 

0,4892 
0,7609 
0.9001 
0,3897 

0,2S53 
0,5513 
1,1654 
0,4791 

0,1984 
0,4387 

• 1,3212 
0,5242 

0,1045 
0,2992 
1,5575 
0,5818 

0,0149 
0,1043 
2,0299 
0,6578 

• ( I d 

11.01 
1.C19 

0,7159 
0,3569 
0,6571 

7 
0,2949 

0,7202 
0,5574 
0,6789 
0,3039 

0.6424 
0,7548 
0.7384 
0,3280 

0,5831 
0,7974 
0,8035 
0,3535 

0,4883 
0,7602 
0.9010 
0,3901 

0,2841 
0,5502 
1,1676 
0,4799 

0,1972 
0,4373 
1,3244 
0,5252 

0,1033 
0,2975 
1,5624 
0,5831 

0,0145 
0,1030 
2,0372 
0,6592 

i,'.(: 

'J.I 
l , t03 

0.7438 
0,3564 
0,6586 
0,2957 

0,7163 
0.5560 
0.6817 
0,3053 

0.6453 
0,7306 
0.7442 
0,3307 

0.5730 
0,7905 
0,8129 
0.3578 

0,4747 
0.7495 
0,9168 
0,3970 

0.2643 
0.5308 
1.2071 
0,4942. 

0,1764 
0,4137 
1,3321 
0,5438 . 

0,0841 
0,2634 
1,6535 ' 
0,6069 

0,0021 
0,0393 
2,3011 
0.6877 

.(• 
0.0 i 

] 1.SJJ7 

0,7490 
0,3576 

0,6479 
0,2873 

0.7232 
0.5587 
0.6693 
0,2959 

0,6555 
0,7565 
0 7^77 
0,3192 

0.5861 
0,7995 
0.7915 
0,3138 

0,4913 
0.7625 

' 0.8371 
0,3792 . 

0,2866 
0.5526 
1,1483 
0,4656 

0.1993 
0,4397 
1,3020 
0,5092 

0.1046 
0.2993 
1,5357 
0,5650 

0,0127 
0,0965 ' 
2.0144 
0,6394 

10 
0.01 
j.aciB 

0,754 
0,359 
0,637 

0,279 

0,729 
0.561 
0.658 
0,287 

0,661 
0,760 
0.716 
0,310 

0.591 
0.803 
0,778 
0,333 

0,496 
0,766 
0,872 
0,368 

0,290 
0,556 
1,127 
0,451 

0,202 
0,442 
1,277 • 
0,492 

0,105 
0,300 
1,508 
0,546 

0.008 
0,077 
1.871 
0,623 

10 
0.1 

1.796 

0,752 
0,338 

0,639 
0,279 

0,725 
0,559 
0.661 
0,288 

0,654 
0,756 
0,721 
0,312 

0,582 
0,796 
0,787 
0,337 

0,483 
0,756 
0,886 
0,374 

0.271 
0,537 
1,164 
0,464 

0,181 
0,419 
1,332 
0,510 

0,084 
0,269 
1,599 
0,569 

The separation point x& was usually determined graph

ically as the zero point of the curve of the printed HQ values. 

Later, a bisection process was built into the program. It 

begins at the first negative HQ value and iteratively calculates 

the zero point of the H curve. In 1960, Terrill [20] first 

stated the separation point at xa/R = 1.823, corresponding 

to '<p\ = 104.45, after the separation point had previously 

been accepted as being at ?>_« 109°1 . Terrill calculated 

the cylinder boundary layer with high numerical cost according 

to a difference-differential equation method. Table 3 shows 

Terrill's results and some results for different values of 



n and h. As the calculations of Terrill and those of the author 

were done with U = 1 • sin x, the values for y0l\'F, b* \'2, Q )1\ 

are given in Table 3, if ra\?5*, 0\ are the values for U = 2 sin x. 

Table 3 shows again that, for example, we can calculate the 

shear stress with little cost to two decimals, "but that the 

computing cost increases rapidly if three or four decimals 

accuracy are required. Some velocity profiles are plotted in 

Figure 15 for n = 200, h = 0.01. 

Figure 14. Flow around a cylinder: s,:^ in the vicinity of the 
separation point for different values of n and h/L. 

d. Tani flow 

The Tani flow. U/U^ = l - (*/L)?| represents" the potential "Blow 
at a~flat\plate in a diverging channel, the velocity curve 

is plotted in Figure 16 for different values of m. The initial 

profile H\ is the similar solution for X=oj . For values of 

28] 



m>4 the ve loc i ty i s UjUm^i\ up to a ce r t a in point x z /L, 
within the limits of computing accuracy, so that A«o'j and 

one starts the boundary layer calculation only at the point 

x0 = x with the profile for A = o| , as the H profile 

is constant up to there. First, H changes slightly, so that 

it can be computed with a coarse step width IIQ. Beyond a point 

x , where H or H become larger, we calculate with a s x xx ° 
finer stepwidth h-, . For values of m< lj the velocity first 

falls rapidly, then more gradually. Here, we begin with a 

fine step width IIQ and beyond x we calculate with a 

coarser step width h-, . In the range where "î i| it is 

practical to compute with a constant h. 

For m = 1, the Tani flow was treated with the series 

method of Howarth [21], with the differences-differential 

equation method of Hartree [22] and specially in the vicinity 

of the separtion point by Leigh [23]. With the series method, 

Tani calculated the flow for m = 2, 4, 8 [24]. Gortler and 

Witting [25] calculated it for m = l , 2, 3, 4, 5. As the 

series converge poorly in the vicinity of the separation point, 

the calculations were done there with different continuation 

methods. 

The boundary layer was calculated with the differential 

method given here for 26 values of m between 0.05 and 100. 

For some values of m, control calculations were performed 

with different parameters n and h. In the limits of this 

work it is impossible to show the curves of V0: S", 6, \-,3 for these 
(12) (13") 

examples. The results of Howarth v , Hartree v , and those 
of the differential method are given for some values of n and h. 

(12) See reference [21]. 

(13) See reference [22]. 
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TABLE 4. HOWARTH FLOW W* = i - *li\ : VALUES FOR //0- T0. a*, ©j 
WITH DIFFERENT VALUES OF n AND h. 

"a = 

xlL 
0.025 

0,050 

0,075 

0,100 . 

0,120 

Kowarlh 

0,12000 

" o = 
T0 = 1,772 
<5* = 0,292 

. 0 = 0,110 

1,011 
0,447 
0,162 

• 

0,613 
0,603 
0,209 

0,315 
0,794 
0,254 

0,000 
1,110 
0,290 

Ilartree 

1,7772 

1,0106 

0,3154 
0,7948 
0,2542 

n — 300 
U j . i 0 - ' 

0,12033 

0,0859 
1,7737 
0,2909 
0,1091 

0,0613 
1,0120 
0,4458 
0,1616 

0,0371 
0,6131 
0,6019 
0,2079 

0,0145 
0.3164 
0.7925 
0,2531 

0,0002 
0,0302 
1,0708 
0,2902 

: :co 
2, 5- 10- ' 

1 0,12019 
t 

1 0.0862 
: 1.7761 

0.2904 
i 0,1038 
1 0.0613 
i 1,0138 
i 0,4450 
! 0,1612 

< 0,0372 
j 0,6146 
; 0,6007 
! 0.2073 

: 0.0146 
| 0,3175 
! 0,7909 
: 0,2524 

' 0.0001 
; 0,0228 

1,0110 
! 0,2896 

200 
5 - 1 0 - ' 
0,12037 

0,0861 
1.7761 
0.2903 
0.1088 

0.0614 
1.0133 
0.4451 
0,1612 

0,0372 
0.6143 
0.6009 
0,2074 

0.0146 
0,3176 
0,7910 
0,2524 

0.0002 
0.0316 
1.0559 
0.2895 

100 
10- ' 

0.12065 

0,0865 
1,7789 
0,2894 
0,1082 

0,0610 
1.0161 
0.4434 
0,1602 

0,0375 
0,6171 
0.5983 
0,2060 

0,0150 
0,3213 
0,7867 
0,2507 

0,0004 
0,0456 
1,0317 
0,2874 

100 
2- 10- J 

0,12072 

0,0615 
1.0140 
0,4440 
0,1603 

,-

0.0150 
0,3214 
0,7870 
0,2509 

0,0004 
0,0473 
1,0335 
0,2874 

separation points. 

Figure 15. Flow around a cylinder; 
velocity profile for n = 200; h/L = 0.01. 
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For the flows with m^ 1, only the separation points x 

will be stated as characteristic quantities. As for the 

cylinder, they were determined either graphically or with the 

bisection procedure from the HQ curve. The results with the 

check calculations are shown in Table 5. The accuracy of the 

separation point could be about 3 figures for the calculation 

parameters used. In Figure 17, the separation points from 

Table 5 are plotted vs. log m in the form log x" ,-

so as to represent all the points with about the same accuracy. 

The separation points are plotted in Figure 16. The 

velocity at which the boundary layer separates is plotted 

vs. log m in Figure 18. At large values of m, the boundary 

layer thickness grows with almost constant outside velocity, and 

the boundary layer flow loses energy. Now, if we insert a some- 7l89^ 

what stronger drop in velocity (pressure increase), the boundary' 

layer separates immediately, 1 and at m = 100, almost with 

full velocity uj\ , Figure 18. With very low values of m 

there is a sudden drop in velocity at the point x = 0; but 

here the boundary layer thickness is zero and the boundary layer 

is compatible with a considerably higher velocity drop than at 

m>i| . At m = 0.05 it is up to some 35% of «̂,| . Whether 

such flow is realizable, and whether the boundary layer 

assumptions still apply here ^ ' will not be investigated. 

The results given here are properties of the mathematical 

models (1), (2), the solution of which by the differential metfibd 

can be considered reliable even for such_ extreme erases as m = 100 

or m = 0.05. 

,(14) See references [l] and [2]. 
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-Figure 17^ Tani £lbW-;|(x./i)/i-(,a/̂  
with x "as the abscissa of 
the separation point, as a 
function of m. 

11. SUMMARY 

An implicit differential method is given for the laminar 

incompressible steady boundary layer at a solid impermeable 

wall. It uses a differential equation of the Crocco type as the 

starting equation. By detailed stability investigations whiqh 

can only be done numerically, it can be shown that perturbations 

are definitely removed after a few steps of calculation. The 

method is tested practically with a large number of examples. 
t 

The computing time requires the use of electronic computers, 

but the method is well suited for programming. For example, an 

accuracy of two decimals for the shear stress is attained with 

little cost, while the cost for an accuracy of three decimals 

must be considered as relatively high. 
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Figure 18. Tani flow: outside 
velocity at the separation point 
as a function of m. 
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